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A B S T R A C T

Quantum computing presents many challenges. Here, we try to tackle one of
them: How do we control the quantum computer? What do you need to send to
make what you want happen? How do you physically construct the control pulses
and what do the pulses even look like? These are all question we are going to try
to answer throughout this project.

This manuscript starts with an introduction to quantum computing. Concepts
such as the qubit and operations are introduced there.

In the second chapter we introduce the quantum system. We use quantum op-
tics and the Jaynes-Cumming model to model the behavior of the system.

The third chapter is the main subject of this project, quantum optimal control
and the GRadient Ascent Pulse Engineering (GRAPE) algorithm. In this chap-
ter we show how can you use the system characterization we made in chapter 2

to find the pulses you need to send to control the quantum computer as you want.

The fourth and last chapter describes the physical implementation of the trans-
mission of the pulses we found in the previous chapter. We show how the entire
system is connected, from the AWG1 to the actual qubits. We discuss the chal-
lenges of creating the pulses and how to solve these problems.

All the codes used in and created for this project, results, and references are avail-
able at

https://github.com/DanielCohenHillel/

Controlling-a-Superconducting-Quantum-Computer

1 Arbitrary Waveform Generator

iii
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1
I N T R O D U C T I O N

1.1 what is a quantum computer?

A classical computer is, essentially, a calculator, not of real numbers but of binary
numbers. A binary digit ("bit" from now on) can be in one of two states, usually
represented by 0 and 1. We can use logic gates to control and manipulate bits to do
various calculations. These are the building blocks of the classical computer. With
the ability to do calculations on bits, and the ability to store bits in the memory
we can construct a computer.

So what is a quantum computer then? Well, if the classical computer uses bits
to do calculations, a quantum computer uses quantum bits ("qubits" from now on)
for calculations. A qubit, much the same as a bit, has two states, a 0 state and a 1

state (denoted by |0〉 and |1〉 for reasons we’ll see later). The principal difference
between bits and qubits is that a qubit can be in a superposition of the two states.
We can use this property to our advantage by manipulating the state of a quantum
computer so that desired outcomes interfere constructively, whereas undesired
outcomes interfere destructively.

1.2 algorithms and further motivation

“Nature isn’t classical, dammit, and if you want to make a simula-
tion of nature, you’d better make it quantum mechanical, and by golly
it’s a wonderful problem, because it doesn’t look so easy.”

- Richard Feynman
The possibilities that quantum computation allow are unprecedented. From sim-
ulation of drugs for developments of new cures to unbreakable encryption, quan-
tum computing promises a lot.

One of the most famous algorithms in quantum computing is Shor’s algorithm,
a quantum algorithm for factoring large numbers. In classical computing the way
to factor a number is to verify if small numbers divide it, one by one. Modern
encryption method require you to factor a large number1. With classical comput-
ers this is a nearly impossible problem, since solving this problem requires a time
that scales exponentially with the number of bits. This means that if we increase
the size of the number that we need to factor by just just one bit, the time re-
quired to factorize the number increases by a factor of two! Shor’s algorithm, on
the other hand, uses the power of quantum computing to solve this problem in
polynomial time!2. This means that increasing the size of a number to be factor-
ized could quickly become an impossible task for a classical computer, it won’t
affect a quantum computer as much.

While Shor’s algorithm is a great example of the power of quantum computers,
and it is also probably the most famous quantum algorithm, it is by no means the

1 This is called RSA encryption
2 The actual complexity is more detailed then this but it is meant to show the rough idea
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2 introduction

most interesting example. Decrypting messages and breaking the world’s cryp-
tography isn’t really a good motivator to try to create quantum computers. Let’s
look at a more useful, optimistic algorithm, Grover’s Algorithm.

Grover’s algorithm is a quantum algorithm that finds the unique input to a
black box function that produces a particular output value, using just o(

√
N) eval-

uations of the function, whereN is the size of the function’s domain. For a classical
algorithm to do this it would take o(N) evaluations. Therefore, Grover’s algorithm
provides us with a quadratic speedup. Roughly speaking, given function y = f(x)

Grover’s algorithm finds x when given a specific y. This algorithm could be used
to search in databases quadratically faster then with a classical computer.

There are more quantum algorithms that were developed in the last several
decades, and even more algorithms that have yet to be developed that might have
impactful applications in the future.

1.3 qubits and quantum gates

Physically, a qubit is a two level quantum system. We call the first level |0〉 and
the second level |1〉. As we know from quantum mechanics, the qubit could be in
a superposition of the two states.

Mathematically, we think of qubits as 2-dimensional vectors, where the first
term corresponds to the |0〉 state and the second term corresponds to the |1〉 state,
so a qubit in a state 1√

2
|0〉+ 1√

2
|1〉 can be represented as 1√

2
1√
2

 =
1√
2
|0〉+ 1√

2
|1〉

The complex pre-factors of each state are called probability amplitudes, since they
are related to the probability of the qubit to be in that state. The probability is
given by the absolute value of that state squared

P(|i〉) = |〈i|ψ〉|2

In the example I just gave, the qubit has a 50% chance to be in the |0〉 state and a
50% chance to be in the |1〉 state.

In this world of qubits as vectors, we think of logic gates (quantum gates), as
unitary matrices. When the qubit goes through a logic gate, the resulting state is
obtained by multiplying the initial state by the matrix. Let’s look at an example
for one of the simplest logic gates we have in classical computing, the NOT gate.
A quantum implementation of the NOT gate takes |0〉 to |1〉 and |1〉 to |0〉). The
matrix that achieves this is(

0 1

1 0

)

Known as σ̂x (Pauli matrix X). As a simple example to see how this works, if we
input |0〉 into the NOT quantum gate, we get as a result

NOT |0〉 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉
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As we expected, NOT |0〉 is |1〉. There are infinite 1-qubit quantum gates, while
there are only four possible one bit gates on a classical computer3.

The last thing we need to know to understand the basic of quantum computing,
is how to represent multiple qubits. If we have several of qubits in our system, we
think of all the qubits together as one vector that is the tensor product4 of all the
qubits. Let’s say we have a |0〉 and |1〉 qubits in our system, we represent that by
|01〉 and it is equal to

|01〉 = |0〉 ⊗ |1〉 =


0

1

0

0


The tensor product of N qubits has 2N coefficients! This is yet another clue

of the power that quantum computers have compared to classical computers. A
quantum gate on multiple qubits is thus a 2N by 2N square matrix.

Now that we have the basic tools of quantum computing, we can use them to
get motivation for the amazing things quantum computers can do

1.4 superconducting quantum computers

The physical implementation of the qubit itself isn’t the subject of this project but
we still look on how would one implement such a device. A problem we have
to face when making a quantum computer is what physical phenomenon would
be the qubit. We need some sort of two level system that we can easily measure
and manipulate, while also staying coherent5 and usable. For classical computers
we already have this figured out for years, a bit is a voltage on a wire, 1 is when
there is voltage on the wire and 0 if there’s none, simple. For a quantum computer
this is much more complicated, there are many quantum phenomena we can use
as our qubit, such as the energy level of an atom, the spin of an electron, the
polarization of photons and so on. It is not so obvious what should be the physical
realisation of the qubit. This project is about a superconducting quantum computer,
with superconducting qubits.

Superconducting qubits are microwave circuits in which the cooper-pair con-
densate effectively behaves as a one-dimensional quantized particle. By inserting
Josephson junctions, the circuit can be made nonlinear, allowing us to isolate the
qubit from higher-energy levels and treat it as a two level system (instead of the
many level system that it really is).

This topic is covered in appendix B, refer there for any additional information,
preferably read the appendix after reading chapter 2.

3 These are: Identity, NOT, always 1, and always 0

4 Represented as a Kronecker product for the dimensions sake
5 Coherence is a big subject, you can think of it as a fancy way of saying that the qubit still holds

information without being corrupted. This is the main problem facing quantum computing right
now
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1.5 references and further readings

The main references for this chapter were two great books on quantum informa-
tion I recommend everyone to read. The first is the well known, de-facto book on
quantum computation and information. "Quantum Computation and Quantum
Information" written by Michael Nielsen and Isaac Chuang also known as "Mike
and Ike". This book covers everything.

The other book I used was "Quantum Computing for Computer Scientists" by
Mirco A. Mannucci and Noson S. Yanofsky. It has, in my opinion, clearer explana-
tions on the pure mathematical nature of quantum information, although it is not
as comprehensive as "Mike and Ike".



Part I

Q U A N T U M T H E O RY

In this part we consider the quantum nature of the problem. We start
with a short introduction to quantum optics, the theoretical basis for
bosonic quantum computers. Then go on to the main part of the project,
quantum optimal control.





2
Q U A N T U M O P T I C S

This chapter introduces concepts in Quantum Optics. The implementation of quan-
tum computers we discuss in this manuscript has a qubit which is a two level
system1 interacting with light (both classical and quantum) inside a resonating
cavity.

2.1 dirac’s method for canonical quantization

Before we dive into anything new, we’ll start by going over the method to quantize
any oscillating phenomena introduced by Paul Dirac in his 1925 Ph.D. disserta-
tion.

Any system of which we have a classical description can be quantized following
a process known as canonical quantization. A classical system can be described by
pairs of canonically conjugate variables, (qj,pj) satisfying the Hamilton equations

q̇j =
∂H

∂pj

ṗj = −
∂H

∂qj

qj is called the canonical coordinate and pj is called the canonically conjugate momen-
tum to the coordinate qj.

To quantize the system we need to replace the dynamical variables (qj,pj) with
canonically conjugate operators (q̂j, p̂j) satisfying the commutation relation

[q̂j, q̂k] = [p̂j, p̂k] = 0 and [q̂j, p̂k] = i hδjk

The Hamiltonian of the quantum system is obtained by replacing the classical
Hamiltonian E = H(q1,p1, . . . ,qj,pj, . . . ) with the quantum Hamiltonian Ĥ =

H(q̂1, p̂1, . . . , q̂j, p̂j, . . . ).
Dirac’s method is best used to solve the system of the quantum harmonic oscil-

lator. The Hamiltonian of the system is

Ĥ =
p̂2

2m
+
1

2
mω2q̂2

To solve it you introduce the annihilation and creation operators (Also called
the "ladder operators"), â and â† respectively. The ladder operators satisfy the
commutation relation [â, â†] = 1. Since â 6= â†, these operators are not hermitian
and therefore not observables of the system, but every observable of the system
can be expressed using them. The operators are

â =

√
mω

2 h
(q̂+

i

mω
p̂)

â† =

√
mω

2 h
(q̂−

i

mω
p̂)

1 Often I’ll use the words "atom" and "qubit" interchangeably. The qubit acts as a two level atom

7



8 quantum optics

The Hamiltonian is therefore

Ĥ =  hω(â†â+
1

2
)

The energy eigenstates are denoted |0〉 , |1〉 , |2〉 , . . . where |n〉 is the eigen state of
the nth energy level, En. A set of important relations between the eigenstates the
the ladder operators are

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉

â |0〉 = 0

From these relations the ladder operators get their name, since you can think
of them as ways to climb up and down the energy "ladder". These eigenstates
are called the number states or Fock states after Vladimir Fock who developed
this representation. The number states |n〉 are also the eigenstates of the number
operator N̂ = â†â, with eigenvalue n, N̂ |n〉 = n |n〉, hence the name.

2.2 the quantization of the electromagnetic field

2.2.1 The Homogeneous Electromagnetic Equation

Maxwell’s equations in free space are

∇ · E = 0 (1a)

∇ ·B = 0 (1b)

∇× E =
∂B
∂t

(1c)

∇× B = µ0ε0
∂E
∂t

(1d)

Taking the curl of 1c and 1d yields

∇× (∇× E) = ∇× (−
∂B
∂t

) = −
∂

∂t
(∇× B) = −µ0ε0

∂2E
∂t2

(2a)

∇× (∇× B) = ∇× (µ0ε0
∂E
∂t

) = µ0ε0
∂

∂t
(∇× E) = −µ0ε0

∂2B
∂t2

(2b)

Using the vector identity

∇× (∇×V) = ∇ (∇ ·V) −∇2V (3)

We obtain from 2a and 2b

∇(∇ · E) −∇2E = −µ0ε0
∂2E
∂t2

(4a)

∇(∇ ·B) −∇2B = −µ0ε0
∂2B
∂t2

(4b)

Using 1a and 1b to cancel the left most term we get

∇2E = µ0ε0
∂2E
∂t2

(5a)

∇2B = µ0ε0
∂2B
∂t2

(5b)
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Replacing vph = 1√
µ0ε0

with c since the phase velocity is the speed of light for
electromagnetic radiation in vacuum

∇2E =
1

c2
∂2E
∂t2

∇2B =
1

c2
∂2B
∂t2

(6)

These equation are called the homogeneous electromagnetic wave equations. We’ll
pick a polarization, arbitrarily, to be in the x direction. The equations become

∂2Ex

∂x2
=
1

c20

∂2Ex

∂t2

∂2By

∂y2
=
1

c20

∂2By

∂t2

(7)

2.2.2 The Single Mode Cavity

Now that we have the homogeneous electromagnetic field equations at hand we
can solve them. We solve 7 using separation of variables,

Ex(z, t) = Z(z)T(t)

Yielding the solution,2

Ex(z, t) =

√
2ω2c
Vε0

q(t) sinkz

By(z, t) =

√
2µ0
V
q̇(t) coskz

(8)

where V is the effective volume of the cavity, q is a time-dependent amplitude
with units of length, k = mπ/L for an integer m > 0, and ωc is the frequency of
the mode.

The Hamiltonian of a single mode is hence given by

H =
1

2

∫
ε0E2 +

B2

µ0
dV (9)

=
1

2

∫
ε0E

2
x(z, t) +

B2y(z, t)
µ0

dz (10)

=
1

2
[q̇2(t) +ω2cq

2(t)] (11)

2 We’ve skipped several of steps going from the differential equation to their solutions, mainly it is
not clear how the scalar constant in front of the expression got there, it has to do with the fact that
the total energy of the electromagnetic field is given by H = ε0

2

∫
V E2 + c2B2d3r. We won’t go into

the calculations because they make it much more complicated and doesn’t give much more insights
into the physics
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Going from dynamical variables to operators, q̂ and p̂ that satisfy the commuta-
tion relation [q̂, p̂] = i h, we get

Êx(z, t) =

√
2ω2c
Vε0

q̂(t) sinkz (12)

B̂y(z, t) =

√
2µ0
V
p̂(t) coskz (13)

Ĥ =
1

2
[p̂2(t) +ω2cq̂

2(t)] (14)

This is the same Hamiltonian as for the harmonic oscillator. Electromagnetic ra-
diation acts as a harmonic oscillator.

Let’s introduce creation and annihilation operators

â(t) =
1√
2 hωc

[ωcq̂(t) + ip̂(t)]

â†(t) =
1√
2 hωc

[ωcq̂(t) − ip̂(t)]

In term of the creation and annihilation operators, the electric and magnetic
field operators become

Êx(z, t) = E0[â(t) + â†(t)] sinkz (15)

B̂y(z, t) =
E0
c
[â(t) − â†(t)] coskz (16)

And we can write the Hamiltonian as

Ĥcavity =  hωc[â
†â+

1

2
] ≈  hωcâ

†â (17)

Ignoring the zero-point energy  hωc
2 .

Since the eigenstates of the quantum harmonic oscillator are the number states
|n〉, they are also the eigenstates of electromagnetic radiation. We can show that
the momentum operator of electromagnetic radiation takes the form P̂ =  hkâ†â.
Where k is the wave number of the electromagnetic wave. Applying the momen-
tum operator to the number states we see that

P̂ |n〉 =  hkâ†â |n〉 = n hk |n〉

This is an important result, the |n〉 state has well defined energy and momentum,
same as n particles, each with energy  hω and momentum  hk, we call these
particles photons. Hopefully you now see why these are called number states,
they correspond to the number of photons in the cavity.

2.3 the jaynes–cummings model

Our goal is to mathematically model the Hamiltonian of a system of a two-level
system, such as an atom, interacting with a single quantized mode of an electro-
magnetic field inside an optical cavity. First we’ll divide the system into 3 parts,
The atom, the cavity, and the interaction between them.
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2.3.1 The Hamiltonians

We separate the Hamiltonian as

H = Hatom +Hcavity +Hinteraction

We’ll now calculate each Hamiltonian separately

cavity – We already calculated the Hamiltonian of the cavity and it is given
by equation 17 as

Ĥcavity =  hωcâ
†â (18)

atom – The atom is a two-level system, meaning its state is in a general super-
position of the ground, |g〉, and excited, |e〉, states. We know that Ĥ |ψ〉 = Eψ |ψ〉
for every energy eigenstate, with energy Eψ. We can use these eigenstates to spec-
trally decompose the Hamiltonian, Ĥ =

∑
ψ Eψ |ψ〉 〈ψ|. In our case, with only

ground and excited states, the Hamiltonian is

Ĥatom = Eg |g〉 〈g|+ Ee |e〉 〈e| (19)

Using the vector representation of these states we’ll write

Ĥatom = Ee

[
1 0

0 0

]
+ Eg

[
0 0

0 1

]
=

[
Ee 0

0 Eg

]

=
1

2
(Eg + Ee)I +

1

2
(Ee − Eg)σ̂z

Again, we define the zero point energy so that the first term becomes 0. The energy
difference is associated with a frequency ωa and from the de-broglie relations
E =  hω so Ee − Eg =  hωa. The atom Hamiltonian is therefore

Ĥatom =
1

2
 hωaσ̂z (20)

interaction – The atom-cavity coupling comes from the interaction be-
tween the atomic dipole, d̂, and the electric field of the cavity mode, Ê. The corre-
sponding Hamiltonian is

Ĥinteraction = −d̂ · Ê = −d̂E0 sinkz(â+ â†)

Where we assumed that the atomic dipole and electric field are parallel3. We’ll
introduce the atomic transition operators

σ̂+ = |e〉 〈g| , σ̂− = |g〉 〈e| = σ̂†+

Due to parity selection rules, only the off-diagonal, only the off-diagonal ele-
ments of the dipole operator are nonzero so we may write

d̂ = d |e〉 〈g|+ d∗ |g〉 〈e| = dσ̂− + d∗σ̂+ = d(σ̂+ + σ̂−)

3 Since the electric field creates the dipole in the direction of the field
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Thus, the interaction Hamiltonian is

Ĥinteraction =  hΩ(σ̂+ + σ̂−)(â+ â
†) =  hΩ(σ̂+â+ σ̂+â

† + σ̂−â+ σ̂−â
†) (21)

Where Ω = −d h

√
 hωc
ε0V

sin(kz) is the amplitude of the interaction. From 17 the

cavity ladder operators â and â† evolve as

â(t) = â(0)e−iωct, â†(t) = â†(0)eiωct (22)

And similarly we can show for the free evolution of the atom

σ̂±(t) = σ̂±(0)e
±iωat (23)

We can write while approximating ωc ≈ ωa

σ̂+â ∼ ei(ω0−ω)t

σ̂−â
† ∼ e−i(ω0−ω)t

σ̂+â
† ∼ ei(ω0+ω)t

σ̂−â ∼ e−i(ω0+ω)t

(24)

We can see that the last two term vary much more rapidly than the first two. Fur-
thermore, the last two terms do not conserve energy (They correspond to [photon
addition + atom excitation] and [photon reduction + atom relaxation]). Therefore, we
can drop the quickly rotating terms4, yielding

Hinteraction =  hΩ(σ̂+â+ σ̂−â
†) (25)

Finally, we can write the full JC Hamiltonian

Ĥ =
1

2
 hω0σ̂z +  hωâ†â+  hΩ(σ̂+â+ σ̂−â

†) (26)

2.3.2 Interaction with a Classical Field

As you might have noticed, we are classical creatures, I’m (fortunately) not in a
superposition of being dead and alive at the same time. As classical creatures, if
we want to interact with the quantum world we need to do so with classical means,
with a classical interface to the quantum world. Back to the Jaynes-Cummings
model, what happens when we introduce a classical electromagnetic field (such
as the microwave drives that control the superconducting system)?

We can do the full rigorous way to calculate the interactions between the quan-
tized atom and the classical electromagnetic field, but instead, we can use a
"hack"5 to make the calculations much simpler, since we already calculated the
interaction between the atom and the quantized electromagnetic field. The Hamil-
tonian of the full quantum interaction, as given in equation 2.3.1 is

Hinteraction =  hΩ(σ̂+ + σ̂−)(â+ â
†)

4 This is called the Rotating Wave Approximation or RWA in short
5 The "hack" is that, like we can turn a classical equation into a quantum one, by replacing dynamical

variables with operators, we can do the same thing but in reverse. Taking a quantum expression
and turning it into a classical one, by replacing operators with dynamical variables
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We can go from the quantized field to the classical field by simply replacing the
field operators with dynamical variables representing the strength of the field,
â → a and â† → a∗. We can also replace σ̂+ + σ̂− with the Pauli matrix σ̂x and
get

Hclassical =  hΩa · σ̂x (27)

The transition from the middle term to the right term is allowed since we know
that the Pauli matrices are observable quantities, hence are hermitian conjugates
of themselves. a is the amplitude of the classical field, later we’ll replace it with
εI(t) and εQ(t) for the drive fields since the classical field is not constant and it
is, in fact, what we control in the system, but I’m getting ahead of myself, more
on this will be shown in the optimal control chapter 3.

2.3.3 Effective Hamiltonian in the Dispersive Limit

As we’ve seen in appendix A, when an atom interacts with a classical electromag-
netic field, it oscillates between higher and lower energy states. These oscillations
are the so called Rabi Oscillations and are an important result in the atom-photon
interaction theory. There is one catch though, if the electromagnetic field doesn’t
have exactly the same energy as the energy difference between the two levels of
the atom, the atom will never reach fully the higher energy state (see figure 20).
The difference between the energy of the electromagnetic field, and the atom en-
ergy difference is called the detuning, ∆ = ωfield −ωatom = Efield−Eatom

 h . The
dispersive limit occurs when the detuning is very large compared to the frequen-
cies (in terms of the variables used in appendix A, the limit is for ∆� Ω0).

We are now going to consider the energies of the states |g,n〉 and |e,n+ 1〉, for
any n. The energies are the eigenvalues of the Hamiltonian6. We can write this
Hamiltonian as

Ĥn =
 h

2
(∆σ̂z +Ωnσ̂y) +  hω0(n+

1

2
)Î

Where Ωn = Ω0
√
n+ 1.

The eigenvalues of this operator are

E±n =  hω0(n+
1

2
)±

 h

2

√
∆2 +Ω2n

Where the ± is + for the ground state of the atom and − for it’s excited state. For
∆ � Ωn we can approximate the square root as a Taylor series, and the overall
expression is

E±n =  hω0(n+
1

2
)± (

∆

2
+
Ω2n
∆

) =  hω0(n+
1

2
)± (

∆

2
+

(n+ 1)Ω20
∆

)

We can replace the number n with the operator n̂ = â†â. Moreover, the operator
σ̂z can be used to "replace" the ±, since it’s eigenvalue is +1 for the ground state
and −1 for the excited state. The overall Hamiltonian is of the form

Ĥeff =  hω0â
†â+

∆2 +Ω20
2∆

σ̂z +
Ω20
∆
â†âσ̂z (28)

6 Sometimes referred to as the time independent schrödinger equation Ĥ |ψ〉 = En |ψ〉, although this is
an inaccurate name
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The physical interpretation of this new expression is that the frequency of the
cavity changes by χ = 2Ω

2

∆ depending on the state of the atom. Or equivalently,
the atom transition frequency changes by χ for each additional photon in the
cavity.

2.4 visualizing quantum states

As you’ll soon find out in the optimal control chapter, we’re going to develop
a system that is some sort of a black box. We can’t really control directly how it
works, we can only make indirect changes to try to get everything to work7.

This is why we want to get as much insight about the system as we can, and
understand that insight in a way that allows us to create intelligent changes to the
system according to the data we gather. Visualization of quantum states give us a
better understanding of the system performance, and allows us to better diagnose
errors. There are many more ways to visualize quantum information than I show
here,but the methods I will present are sufficient for our purposes.

2.4.1 Population Graphs

The simplest way we can visualize the quantum system is using population graphs.
In a population graph, you plot the probability that the quantum system is in each
of its possible eigenstates. For a time-dependent unitary operator, Û(t), acting on
an initial state |ψ〉, the population of the eigenstates |φn〉 over time is given by

Pn(t) =
∣∣〈φn| Û(t) |ψ〉∣∣2

Although they are simple, population graphs are a really powerful, simple tool
you can use to visualize the system.

2.4.2 The Bloch Sphere

As it turns out, you can represent any qubit in the form8

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

This representation describes a sphere with polar coordinate θ and azimuthal
coordinate φ. Since this is the case, it’s very useful to visualize a qubit state as
some point on a sphere, the Bloch Sphere. An example of the representation of a
state using the Bloch sphere is shown in Figure 1

7 This is the nature of numerical optimization problems
8 You can find a proof of this in the "Mike and Ike" book
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φ

θ

|0〉

|1〉

|0〉+|1〉
|0〉+i|1〉

|ψ〉

Figure 1: Bloch sphere representation of a qubit

2.4.3 Wigner Function

The Wigner function is the distribution in the phase space of a continuous variable
quantum system9. For classical systems, phase space distributions correspond to
a classical probability distribution. However, the Wigner function the distribution
also involves quantum uncertainty. Wigner functions can take on negative values
in small regions, and are therefore quasi-probability distributions. This is allowed,
since only areas larger than  h are ever allowed to be measured, according to the
Heisenberg uncertainty principle.

The Wigner function of a particle with wave function ψ(q), is defined as

W(q,p) :=
1

π h

∫∞
−∞ψ∗(q+ y)ψ(q− y)e

2ipy
 h dy

An interesting example to use of the Wigner function is looking at the Wigner
function of a Fock state. The Wigner distribution of a Fock state could be calcu-
lated directly from definition and the resulting expression is10

Wn =
2

π
(−1)nLn[4(q

2 + p2)]e−2(q
2+p2)

More importantly, we can look at a heat map of the Wigner function, as a nice
visual aid to understand the state. An example of the |4〉 state Wigner distribution
is shown in figure 2

9 Such as position and momentum
10 proof of which is left as an exercise to the reader ;)
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Figure 2: Wigner distribution of the |4〉 Fock state. α = q+ ip

2.5 references and further readings

The standard introductory book on this subject (which is also the one I used for
reference) is "Introductory Quantum Optics" by Christopher C. Gerry and Peter
L. Knight.

Another great resource is the series of online lectures taught by Prof. Alain
Aspect from École Polytechnique.



3
O P T I M A L C O N T R O L

In this chapter, we tackle the problem of Quantum Optimal Control. We control
our quantum system by sending some (classical)electromagnetic pulse into a cav-
ity. An obvious question arises: what pulse shape needs to be sent to achieve a
particular operation on our quantum system?

It turns out that this questions does not have an easy answer. In the rest of the
chapter we’ll try to give an answer using an algorithm called GRAPE.

3.1 grape

Although in some cases we can calculate the desired pulse analytically1, most of
the time this isn’t an option. Often, we need to use numeric means to find an
optimal pulse. To find the desired pulse numerically, we can model our system
on a classical computer and simulate what happens when you send a pulse. Using
the results of the simulation, we try to change the pulse until we get the desired
effect.

So what’s GRAPE then? GRAPE in an acronym for GRadient Ascent Pulse Engineering.
When we model a quantum system, in our case, a qubit interacting with a cavity,
we can model the physical information about the system using the Hamiltonian of
the system. We can split the Hamiltonian into two. There’s the Hamiltonian that
nature gives us, of how a qubit behaves and how it interacts with its surrounding.
And there’s the Hamiltonian we control, using electromagnetic control pulses. We
can send any possible pulse shape. To account for that fact, we treat the pulse as
a function of time, as a step-wise constant function. The pulse is, essentially, just
an array of many variables, and we want to find the values that give the desired
result. This is a classical case of an optimization problem. To optimize the values,
we set a cost function that tells us how "good" the current pulse is.

In principle, we could use a brute-force search and check every possible pulse
until we find one that minimizes the cost function. This method is inefficient.
A better way to optimize the function is by calculating also the gradient of the
cost function, and using an optimization algorithm2, to find the minimum of the
function efficiently.

1 As seen in appendix A
2 The Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) algorithm (the B is since it

could handle simple box constraints) in our case. It’s a quasi-newton iterative method for nonlinear
optimization problems. We "feed" into it the cost function and gradient

17
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∆t

k

T0

N1

t

εk

Figure 3: Example of a step-wise constant function as an array of numbers

3.2 the cost function

When our desired operation is to prepare our quantum system in a predetermined
state, a good figure of merit of how close our system is to the desired state is given
by the fidelity. The fidelity is a measure of the "closeness" of two quantum states,
The fidelity is 0when the two states are orthogonal, and 1 if they are identical. The
fidelity is given by the magnitude of the overlap between the two states squared3.

F(ψ1,ψ2) = |〈ψ1|ψ2〉|2 (29)

The infidelity, 1− F between the two states, can be conveniently used as the cost
function in our optimization procedure4. Given an initial state and a target state,
along with the Hamiltonian and pulse information, we want to be able to calculate
the fidelity for any given pulse. To do so, we need to solve Schrödinger’s equation
for the pulse

i h
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (30)

In the previous chapter we characterized the Hamiltonian of the system (equa-
tions (26) and (28)),

Ĥ(t) = Ĥ0 +
∑
k

εk(t)Ĥk (31)

where H0 is the (time-independent) Hamiltonian of the system without the drives
(given, for example, from the Jaynes-Cummings model). Each εk(t) is the ampli-
tude as a function of time of the control drive pulses, and each Hk is the (time-
independent)Hamiltonian describing the interaction between the control pulse
and the rest of the system. We call these Hamiltonians the drive hamiltonians. Our
goal with GRAPE is to find optimal εk(t).

3 Assuming both states are pure states and not mixed states
4 Since we want to maximize the fidelity, we want to minimize the infidelity
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On each constant step of the amplitude functions εk(t), the entire Hamiltonian
is constant. Luckily, the solution of the Schrödinger equation for a constant Hamil-
tonian is easily solved by

Û(t) = e
− i

 h

∫T1
T0

Ĥ(t)dt (32)

If we choose T0 and T1 as the end points of a step of the Hamiltonian, the total
Hamiltonian of the system is constant so the integral is just a simple multiplication
by T1 − T0 which we’ll write as δt = T1 − T0. The solution becomes

Û(t) = e−
i·δt
 h Ĥ(t) (33)

In order to calculate the solution over the entire pulse we need to solve for the
first step, then find the solution by the end of that time-step, and use it as the
initial condition for the next time step, repeating for each time step. The solution
until the Nth time step is simply the product of the previous solutions for each
time step

ÛN(ε(t)) =

N∏
k=1

Ûk(ε(t)) (34)

With Û(ε) in hand, we can calculate the evolution of the state over the entire pulse

|Ψfinal〉 = Û(ε) |Ψinitial〉 (35)

This way, if we want to calculate the fidelity after applying the drives, we can
simply calculate the fidelity between the target state and the final, calculated state

F(ε(t)) = F(Ψtarget,Ψfinal) =
∣∣〈Ψtarget| ÛN |Ψinitial〉

∣∣2 (36)

As mentioned, if we want to optimize the cost function efficiently we’ll need to
calculate the gradient of the cost function along with the cost function itself.

3.3 the gradient

For simplicity, we’ll first derive the gradient of the overlap

c = 〈Ψtarget|Ψfinal〉 = 〈Ψtarget| Û |Ψinitial〉 (37)

We can then get the fidelity by noting that F = |c|2. We want to differentiate the
overlap by each control parameter. To do so, note that Û is defined as:

Û = ÛNÛn−1...Û2Û1

And when differentiating by a control parameter only one Ûk is affected,

∂c

∂εk
= 〈Ψtarget| ÛNÛN−1...Ûk+1

∂Û

∂εk
Ûk−1...Û2Û1 |Ψinitial〉

We can write that for a constant Hamiltonian (from Schrödinger’s equation)

Ûk = e−
i·δt
 h Ĥ(t)
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And approximate the derivative ∂Ûk∂εk
in the limit of small δt by writing

∂Ûk
∂εk

≈ −
i · δt

 h

∂H

∂εk
· e−

i·δt
 h Ĥ(t) = −

i · δt
 h

∂H

∂εk
Ûk

Theoretically, we have everything we need to calculate the gradient, but it’s still
rather complex computationally (o(N2) complexity). A different method can be
used to reduce the computational overhead.

The derivative of the cost function by a control parameter of the pulse has
become

dc

dεk
= −

i · δt
 h
〈Ψtarget| ÛNÛN−1...Ûk+1︸ ︷︷ ︸〈

ψ
(k+1)
bwd

∣∣∣
dH

dεk
Ûk...Û2Û1 |Ψinitial〉︸ ︷︷ ︸∣∣∣ψ(k)

fwd

〉 (38)

Where we defined two arrays, 〈ψbwd| and |ψfwd〉, the multiplication components
before and after the derivative of H

∂c

∂εk
= −

i · δt
 h

〈
ψ

(k+1)
bwd

∣∣∣ ∂H
∂εk

∣∣∣ψ(k)
fwd

〉
(39)

We can see from 38 that

∣∣∣ψ(k)
fwd

〉
=

|ψinit〉 k = 0

Ûk

∣∣∣ψ(k−1)
fwd

〉
otherwise

∣∣∣ψ(k)
bwd

〉
=

|ψtarg〉 k = N+ 1

Û
†
k

∣∣∣ψ(k+1)
bwd

〉
otherwise

Now all we need is to do 2N calculations in the beginning (N for bwd and N for
fwd), and then calculating the actual gradient using equation 39. This improves
the computation complexity from o(N2) to o(N), while the memory complexity
stays o(N).

It’s important to note that c is not the fidelity, but the overlap. We can get the
fidelity from c by

F = |c|2

since c might be complex this derivative is a bit less trivial than it might seem. We
can write c(~ε) as a(~ε) + b(~ε)i, where a,b ∈ R and we get that

∂F

∂εk
=
∂|c|2

∂εk
=
∂|a+ bi|2

∂εk
=
∂(a2 + b2)

∂εk
= 2(a

∂a

∂εk
+ b

∂b

∂εk
)

We can notice that c( ∂c∂εk )
∗ = a ∂a∂εk + b ∂b∂εk + (ab− ∂a

∂εk
∂b
∂εk

)i. More importantly,
we can see that the real part of that expression is exactly what we need. Putting it
all into one formula we get

∂F

∂εk
= 2 ·Re

{
c(
∂c

∂εk
)∗
}

(40)

Now all you need is to plug 39 and 37 into 40 and you got your gradient :)
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Let’s do a little test now to see that everything is working well. The simplest
pulse you can send is the pulse that takes the qubit from being in state |0〉 to state
|1〉, where the transition frequency is set to 1Ghz (hence the period is 1ns). We
discussed this situation in appendix A so we know how the solution should look
like. Running our GRAPE code with some random initial pulse we get
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Figure 4: Pulses solution for |0〉 → |1〉. Each color is a different microwave control pulse
of the system, I and Q. They are the real and imaginary parts of the calculated
wave in appendix A

Amazing! From some random initial pulse we got sinusoidal waves with 1Ghz
frequency, just as predicted in appendix A.

Before we get too excited, there are a couple of things weird with this pulse. The
first, more obvious problem, is that although the waves are sin and cos as expected,
they’re still pretty jagged-y, there is some randomness on top of the wave and it’s
not as smooth as we expected. This is since small random changes don’t really
change the final result5. In addition, high-frequency components generated by
the computer do not have an effect in reality. This is due to the limited bandwidth
of our pulse generator and RF circuitry.

Another problem, that is not immediately obvious, we can only see if we look
at the population graph of the qubit over the duration of the pulse. We expect the
graph to start at 1 and end at 0 for |0〉 and start at 0 and end at 1 for |1〉. Let’s look
at that graph for the initial random pulse and for the optimized pulse

5 The noise cancels itself out



22 optimal control

0 10 20

0.00

0.25

0.50

0.75

1.00
A

m
pl

it
ud

e
(M

H
z)

Initial pulse

P(|g〉)
P(|e〉)

0 10 20

Final pulse

Time (ns)

Figure 5: Population of qubit levels over pulse duration. Before the optimization, the state
of the qubit (population of ground and excited states) almost did not change at
all. After the optimization, the qubit goes from state |0〉 to |1〉 to |0〉 to |1〉, doing
some unnecessary back and forth between the states

As expected, the initial random pulse doesn’t change the pulse almost at all.
The optimized pulse on the other hand is problematic. The population of |0〉 for
example, goes from 0 to 1 and then goes back to 0 to start over again. Ideally, the
population will change from 0 to 1 (and vice-versa) smoothly, only once.

This happens because the amplitude of the optimized pulse is too big. As we de-
fined the optimization, the algorithm doesn’t care that the population acts weirdly
in the middle of the pulse as long as it ends at the desired state.

To solve these problems (and more we’ll talk about), we introduce constraints to
the algorithm.

3.4 constraints

Since instruments have physical limitations, for example, on the maximum am-
plitude of a pulse, we must add constraints on the computer calculations to not
exceed these limitations.

We define a set of constraints on the solution gi > 0, and associate a Lagrange
multiplier λi to each constraint6.
Our goal is to minimize

1−F(~ε) +
∑
i

λigi(~ε)

Let’s add a constraint to each of the most problematic physical limitations.

3.4.1 Limiting the Amplitude

This is the most obvious physical limitation. We can’t generate pulses with infinite
energy, so we have to restrict it. There are two ways we can do so, the first is to
create a hard cut-off amplitude. No matter what, the amplitude will never go
above this amplitude. We usually want this cut-off to be the maximal output

6 In an ideal optimized pulse, gi = 0
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amplitude of our pulse generator. But normally we don’t want our generator to
work at its absolute limit7, so we can add also a soft amplitude maximum by
"rewarding" the cost function to stay at a lower amplitude. Let’s see how we
would implement such a thing, starting with the hard cut-off.

Instead of controlling and changing the amplitude (~ε) directly, we’ll introduce
a variable ~x and relate them as

~ε = εmax tanh~x

As you probably guessed, εmax is the maximum amplitude of the pulse. Since the
optimization algorithm can only change ~x, the amplitude of the pulse will always
be between −εmax and εmax. Unfortunately, this changes the gradient of the cost
function since we now want the derivative with respect to ~x instead of ~ε. We can
relate the two

∂F

∂~x
=
∂F

∂~ε

∂~ε

∂~x
=

εmax

cosh2~x
∂F

∂~ε

We can use the derivative ∂F∂~ε we got from 40 and simply calculate εmax
cosh2 ~x

and we
again have the gradient.8

For the soft amplitude penalty all we want is that bigger amplitudes⇒ bigger cost
function. Since our algorithm seeks to minimize the cost function, this will lead to
the overall amplitude being smaller. The way we do so is simple, we can define a
constraint gamp that sums all the amplitudes of the steps of the pulse, so

gamp =
∑
k

|εk|
2

Still, since it is added to our cost function we need to find the gradient of the
penalty as well. In this case it’s rather simple since it’s a basic parabola

∂gamp

∂εk
= 2εk

and now we have all we need in order to add this penalty to our cost function.9

3.4.2 Limiting Bandwidth and Slope

The next limitation is the maximum frequency our AWG can create because the
device can’t change the voltage instantaneously. Again, like we had with the am-
plitude limit, there are 2 types of limits we can make, hard and soft. Let’s start
with the hard limit.

We have some frequencyωmax which is the maximum frequency that our AWG
can generate. To make sure that our simulation doesn’t produce such a pulse we
can go from time space to the frequency space with a Fourier transform

~ε = (DFT)−1~x

7 Not only that it might damage the device, with stronger pulses the non-linear optical effects increase
8 Since tanh(x) is a positive monotonic transformation it preserves the locations of the maxima of the

function. This means that in practice we can just ignore the new derivative
9 We can also create non-linear soft amplitude constraint. With such constraint we can set a soft

maximum we want to stay well below of. We won’t show how to do so
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The numerical optimization algorithm controls ~x which is in the frequency space.
Now if we want to limit the frequency we can simply set to 0 any frequency that
is above our maximum frequency

x(ω > ωmax) = 0

The gradient of the new cost function is simply the Fourier transform of x

∂~x

∂εk
= (DFT)

∂~ε

∂εk

And we know ∂~ε
∂εk

from previous sections. It’s important to note that the hard cut-
off of the amplitude and the hard cut-off of the frequency do not work together
since one is in time domain and one is in frequency domain. This is not much of a
problem since we can compensate with the soft limits that do work well together
(since they require adding to the cost function instead of changing coordinates).
In my simulations I use the amplitude hard limit instead of the frequency one
since it is easier to work with.

For the soft limits, we’re limiting the slope (derivative) of the pulses and not
the frequency directly. The slope of a step function is simply εk+1 − εk, we want
to limit the size of the slope so we’ll look at the expression |εk+1 − εk|

2 instead.
Summing all the slopes (to get an overall slope size of the entire pulse) we get the
expression10

gslope =

N−1∑
k=0

|εk+1 − εk|
2 (41)

Unlike the amplitude, since the slope of the boundaries is not well defined we’ll
have the edges defined differently than the center of the pulse. The gradient of g
in the center is a simple derivative, notice that each εk appears only twice in the
sum

∂gslope

∂εk
= 4εk − 2(εk+1 + εk−1)

It’s nice to see that the expression looks like how’d you numerically estimate the
second derivative, since the gradient of the slope (which is the derivative) is the
second derivative. Now we need to define the gradient at the edges, you can
see that the derivative of εk depends on his neighbors on both sides. Since the
first and last element of the pulse don’t have 2 neighbors they are treated a little
differently. each of the edges appears only once in the sum 41 unlike the others
that appear twice, we can simply take the derivative of that one term and get

∂gslope

∂ε0
= 2(ε1 − ε0)

∂gslope

∂εN
= 2(εN − εN−1)

Now, before we continue, we’ll add another small constraint that will also solve
the problem of the slope at the boundaries. It might seem weird at first, but we

10 Note that we have a problem at the edges since the slope of the end points is not well defined, we’ll
fix this problem later but for now we just ignore the last point k = N
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want to pulse to zero-out at the edges. This is since our AWG device can’t imme-
diately start a pulse with some amplitude, it can’t get from 0 to that amplitude
instantaneously (for the same reason we limit the slope in the first place). This
could be achieved by simply setting the first and last steps of the pulse and their
gradient to 0.

ε0 = εN =
∂ Cost
∂ε0

=
∂ Cost
∂εN

= 0

This solves the problem we were trying to solve we were having with the slope
at the boundaries, since the gradient is 0 at the edges and does not depend on its
neighbors.

Now that we have both amplitude constraint and bandwidth constraint we can
use them to get a nice, smooth solution, that any wave generator would be happy
to produce
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Figure 6: Control pulses before and after GRAPE optimization with amplitude and band-
width constraints

The pulse is exactly what we expect it to be. More importantly, if we look at the
population graph of the levels, it does exactly what we want, go from state |0〉 to
state |1〉 without going back and forth.
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Figure 7: Population of qubit levels over pulse duration. Before the optimization, the state
of the qubit (population of ground and excited states) almost did not change at
all. After the optimization, the qubit goes from state |0〉 to |1〉

Another interesting visualisation of the success of this pulse is the path of the
qubit on the Bloch sphere over time (see the last section in chapter 2). Plotting the
populations on the Bloch sphere we get

|0〉

|1〉

Figure 8: Path of the qubit along the Bloch sphere. The qubit goes from state |0〉 to state
|1〉, preforming one loop on the sphere, the arrows represent the initial state and
the target state, and the points represent the path of the state of the qubit

As you can see, the path of the qubit isn’t a straight line, but some loop, com-
pleting a full rotation around the ẑ axis. This is explained by the fact that the
base Hamiltonian of the qubit is ωσ̂z, where σ̂z is the Pauli matrix Z. This matrix
corresponds to rotation of the Bloch sphere around the ẑ axis. This is why we can
think of the entire Bloch sphere as always rotating with frequency ω0 around the
ẑ axis, this is why a "straight" path is actually one that does one loop around the
ẑ axis.
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3.4.3 Limiting Pulse Duration

As much as I wouldn’t mind waiting a few nanoseconds longer for the qubit oper-
ation to end, the qubit itself isn’t as patient as me. A state-of-the-art qubit would
last, at most, few hundred microseconds (and that’s a very optimistic estimation).
We simply don’t have the time to wait for the operation to end if we want to run
some complicated quantum circuit. This is why we want to add a constraint on
the duration of the pulse. This way, if we set the total duration of the pulse to
longer than the shortest possible pulse, it would find the shorter pulse and the
rest of the pulse will change nothing (see figure 9)

The constraint is fairly straight forward, add a penalty for any time a fidelity of
1 isn’t achieved. Put into an equation we get

gdur =

N−1∑
i=0

(1−Fi)

Where Fi is the fidelity at time step i.
We can rather simply calculate the fidelity at any given time since they are

already calculated in order to find the fidelity in the last time step. We can simply
modify the loop that calculates the final state into giving the fidelity at each time
step and sum the results.

Luckily for us, the calculation of the gradient is also pretty simple. The gradient
of the fidelity at each time step is calculated the same as the gradient of the fidelity
we calculated in the beginning of the chapter11

∂gdur
∂εk

= −

N−1∑
i=k

∂Fi
∂εk

The pulse duration constraint works nicely to complete the other constraints.
Without this constraint, the pulse will "try" to use all it’s time to get the result we
desire. When running the algorithm without the constraint we can get problems
if the duration we gave to the pulse is too long or too short. With this constraint
on, we can simply give the algorithm a duration that we know for sure is more
then the minimum required time, and the algorithm will simply use the minimum
time it needs, and no more. On the other hand, if we didn’t have the amplitude
(and bandwidth) constraints, the algorithm might find that it’s best to just give a
super-strong pulse for a tiny amount of time, but that’s not physically possible
as we discussed. This is why we can think of the constraints working together to
"box in" the pulse into an ideal "size".

If we run GRAPE now, with all the constraints together, and look at the popu-
lation of all the level over the duration of the pulse, we get12

11 note that εk only appears in the expression for Fi, if i > k, so the sum starts at i = k
12 This is a rather extreme case where the total duration of the pulse is around three times longer then

the minimum duration. This was done purposefully to demonstrate the point.
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Figure 9: Level population of each state as a function of time over the duration of the
pulse.

As expected, we get exactly what we want, the pulse uses the least amount of
time that it needs and then stop. This way, if we pick a long duration for the pulse,
instead of the pulse trying to fill the entire time at a very low amplitude, or do
several of loops before arriving at the target, the qubit simply takes exactly the
amount of time that it needs to get to the desired state under all of the constraints
and then stops.

3.5 implementing qubit operations with grape

3.5.1 DRAG - Imperfect Qubits

When we did all of our calculation on the qubit we didn’t include one detail, it’s
really hard to create a true two-level system. In the way our qubits are imple-
mented, there are actually more than two levels. It’s not a two level system but we
treat it as one. Since the higher levels are off-resonance, we can often just ignore
them. However, there is some probability of the higher levels getting populated by
high-frequency components of our pulses. The shorter our pulses are, the more
these higher levels excitation occur. We will prevent those so-called leakage errors
by using Derivative Removal via Adiabatic Gate (DRAG) pulses. We can generate
those pulses by including more than two levels in our algorithm and changing the
Hamiltonian a little bit so it accounts for the off-resonance higher levels.

Before we continue to implement DRAG, let’s see if the third level really is that
much of a problem. We run a simulation of GRAPE just as we did before but this
time with three levels instead of two, and the third level should start and end at 0

population. We get after running GRAPE
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Figure 10: Level population of the 3-level "qubit" over the duration of the pulse calculated
by the GRAPE algorithm we have so far

Well yes, the forbidden level did start and end at 0 population13, but in the mid-
dle the qubit really became a 3 level system with the population of the forbidden
level being really dominant around t = 50ns! We can’t simply replace the qubit
with a 3 level system and make the target of the third level always 0 and call it a
day. We can’t treat higher levels as just more "qubit" levels, they are unwanted
and we need to give them a penalty so the probability of being in a higher level
would be always almost zero and change only a tiny bit. There are many ways we
could implement such a penalty, the most obvious way is by simply making the
probability to be in an higher level into a penalty, summing over all time we get
(We’ll call the third level of the qubit |f〉 to not be confused with the |3〉 Fock state
(photon number state))14

gforbidden =

N−1∑
i=0

∣∣∣〈f∣∣∣ψ(i)
fwd

〉∣∣∣2
We already have ψ(i)

fwd that we calculated earlier, so for so good.
Now moving to to complex part of DRAG, the gradient. Let’s again define the

overlap

cf =

N−1∑
i=0

〈
f
∣∣∣ψ(i)
fwd

〉
now to calculate the gradient we’ll derive over εk

∂cf
∂εk

=
∂

∂εk

N−1∑
i=0

〈
f
∣∣∣ψ(i)
fwd

〉
=

N−1∑
i=0

∂

∂εk

〈
f
∣∣∣ψ(i)
fwd

〉
recall that ψ(i)

fwd = Ûi · Ûi−1 · ... · Û1 |ψinitial〉, Ûk only appears for i > k, so we
can start the sum from i = k. We’ll also expand ψ(i)

fwd into what it is and get

∂cf
∂εk

=

N−1∑
i=k

∂

∂εk
〈f| Ûi · ... · Û0 |ψinitial〉

13 If you decrease the anharmonicity you would also have final forbidden level population, which is a
more serious problem

14 If we wanted to accounted for higher levels we can sum over the sum for each level
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the only element that depends on εk is Ûk, so we can rearrange the equation as

∂cf
∂εk

=

N−1∑
i=k

〈f| Ûi · ... ·
∂Ûk
∂εk

· ... · Û0 |ψinitial〉

=

N−1∑
i=k

〈f| Ûi · ... · i · δt
∂Hk
∂εk

Ûk · ... · Û0 |ψinitial〉

= i · δt
N−1∑
i=k

〈f| Ûi · ... · Ûk+1 ·
∂Hk
∂εk

∣∣∣ψ(k)
fwd

〉
Now just to keep everything simple and maintainable, we’ll define〈

φ
(i,k)
bwd

∣∣∣ = 〈f| Ûi · ... · Ûk+1
The equation for the overlap now becomes

∂cf
∂εk

= i · δt
N−1∑
i=k

〈
φ
(i,k)
bwd

∣∣∣ ∂Hk
∂εk

∣∣∣ψ(k)
fwd

〉
Now we got all we need to calculate the penalty of the occupying the higher
level and it’s gradient. This isn’t a perfect solution though, for N time steps we
need to do o(N2) calculations to get

〈
φ
(i,k)
bwd

∣∣∣. This slows down the calculation

considerably15 and there is a lot of overhead in the way we calculated
〈
φ
(i,k)
bwd

∣∣∣.
We can use a smarter way to calculate it.

Consider a function, very similar to 〈ψbwd| we had earlier (in fact, it’s the same
function minus multiplying by the target state on the left)

ψ
(k)
bwd = ÛNÛN−1...Ûk+2Ûk+1

taking the inverse of the resulting matrix we get

(ψ
(i)
bwd)

−1 = Û−1
i+1Û

−1
i+2...Û−1

N−1Û
−1
N

by multiplying the two matrices we get (defining their product as φbwd)

φ
(i,k)
bwd = (ψ

(i)
bwd)

−1(ψ
(k)
bwd) = (Û−1

i+1 · ... · Û
−1
N )(ÛN · ... · Ûk+1) = Ûi · ... · Ûk+1

This is exactly what we wanted! from this we’ll define〈
φ
(i,k)
bwd

∣∣∣ = 〈f|φ(i,k)
bwd

remember that ψbwd was already calculated from the gradient calculation, taking
the inverse of ψbwd isn’t affected by how many time steps there are, also the
multiplications between ψbwd, (ψbwd)−1 and 〈f| isn’t dependent on the amount
of time steps, so the entire calculation is o(N) complexity.

Let’s run now the algorithm and get some results

15 it makes to calculation run around 100 times slower, pretty bad considering it’s just a penalty
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Figure 11: Level population of the "qubit" over the duration of the pulse that was found
by the GRAPE algorithm, with all the penalties turned on, including the DRAG
penalty.

Nice! state |0〉 goes directly to 1, |1〉 goes directly to 0 and the forbidden level is
barley changed throughout the pulse (the fidelity gotten from this pulse is around
99.9%, so pretty good).

I think that we talked enough about the qubit for now, let’s move the the other
half of the system, the cavity.

3.6 implementing cavity operations

3.6.1 Limiting the photon number

“Hilbert space is a big place.”
- Carlton Caves

Here’s the thing about the cavity levels, there are infinite amount of them. We can
make an assumption that the cavity only has N levels, but it is still possible that
something happens in the higher levels that may affect the physical result. We
want to make sure that everything interesting is contained in the N levels that we
have.

This is quite similar to what we did in the previous section with DRAG, we
want to put a penalty on the higher levels. Still, there are two main differences.
The first, is that there are much more than one or two extra levels, and as we’ve
seen, the method we used in the previous uses very heavy computation and we
can’t do it for so many levels. The other difference is that we care less about if
some higher level is occupied for a part of the pulse. In the cavity there are higher
levels and they’re all likely to be but the reason we’re limiting the cavity levels
is for computing reasons, not physical ones. Unlike the cavity, we really want
the qubit dynamics to involve only two levels, so it makes sense that we’ll use a
different penalty to limit the photon number.

The idea is this, we’ll define nph as the highest level we want the cavity to
have. Now let’s calculate what will happen if the cavity will have another level,
for a total of nph + 1. Ideally, nothing will change, the new level should start at
0 probability and end at 0 probability with no change in between. If there is a
change, will add a penalty to the pulse, so in the next iteration there will be less
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of a change. We can do so for any level higher than one, so instead of using only
nph + 1 we’ll some over nph + k for reasonable amount of k’s.

We’ll define Fnph+k as the fidelity if there were nph + k levels. Putting the idea
into a formula we get that the new cost function is given by

Cost =

N∑
k=0

Fnph+k(~ε) −
∑
i

λigi(~ε)

We can double enforce the penalty if we add a constraint making sure there is no
change in the fidelity for different levels

gph =
∑
k1 6=k2

(Fnph+k1 −Fnph+k2)
2

The gradient of which is simply the gradient of which is simply

∂gph

∂εk
= 2

∑
k1 6=k2

[(Fnph+k1 −Fnph+k2)(
∂Fnph+k1
∂εk

−
∂Fnph+k2
∂εk

)]

and everything in this expression was previously calculated (they’re simply the
derivatives of the fidelity and the fidelity itself).

It’s important to note that while it might be tempting to leave nph at a small
value so there will be less to calculate (the size of the matrices grows with n2ph),
there is good reason to use a high values of nph. Bigger nph oscillate at higher
frequency (since the cavity is simply a harmonic oscillator), so it’s possible to use
shorter pulses, and since keeping qubit alive is really a major problem, keeping
the pulses short is important to be able to accomplish the most with the time we
have with the qubit before it dies.

Lets see what happens if we run the transmon-cavity code. We’ll only look at
the resulting population graph after the optimization. I warn you that the graph
is a bit cluttered. You shouldn’t look at any specific details or any specific curve,
I didn’t put a legend explaining what each curve is. We’ll look at it then discuss
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Figure 12: Transmon-cavity state population over the duration of the pulse that does the
transformation |g〉 ⊗ |0〉 (Blue) −→ |g〉 ⊗ |1〉 (Red).

After you see this graph, you’d think that the constraint didn’t work correctly.
After all, the transformation is from level |0〉 to level |1〉, but there were many other
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levels that got occupied during the middle of the pulse. This is a valid guess, but
there is an explanation why the higher level would get occupied. The reason is
that you can’t really create number states directly in a cavity. You can only create
coherent states directly. To create number state you need to make the coherent
states interfere in a way that creates a number state.

So why then should this graph show it was successful then? Well, I ran the
algorithm with 50 cavity levels (!), this means that there are actually 100 curves in
that graph (50 of the cavity times 2 of the qubit). If you’d try to count the number
of curves that you see you’ll probably count 7-8 curves and not all of the 100, this
is since most of the curves stay at zero population. This is exactly what we want,
the higher levels don’t affect the physics of the system, if we add more levels (like
in the real world where there are infinite levels) the pulse would still give the
same desired result.

3.7 finding a good initial guess

Although the GRAPE algorithm is the one responsible to find to optimal control
pulse, we still need to give it some initial guess and the algorithm does the rest.
You might think that this isn’t much of a problem since theoretically any initial
guess should arrive at a desired result. The problem is that often the algorithm
gets stuck and can’t find a result. This could be caused by a number of reasons,
the main two are when the constraints are too strong and when the initial guess
is not good enough.

When the constraints are too strong, the algorithm might prefer optimizing
them instead of the fidelity and what we get is a pulse that achieves horrible fi-
delity but within the constraints. The solution is simply weakening the constraints
(choosing a smaller λ for the constraint).

The other, harder to solve problem is when the initial guess of the pulse is
problematic. For example, if you choose the initial guess to be the most obvious
initial guess you can make, constant 0, the algorithm will probably stop after one
iteration changing nothing. This is because the gradient of a constant 0 pulse is
actually zero, so the optimization algorithm thinks it’s in an optimized minimum
when in fact, it couldn’t be more wrong.

The other simple initial guess you might think of using is a random pulse. After
all, we don’t know what is the desired pulse so picking a random pulse is as good
as any other. The problem with a random pulse is that it is not a smooth function,
so the algorithm might find it difficult to get a smooth solution.

There are two approaches we can take to get a good initial pulse. The first
approach assumes nothing about the system, it’s good since it’s really general
and can be used in any case, but might be not ideal in some cases. The second
approach is when we know roughly how the solution should look like, we can
use some pulse that is similar to what we expect and GRAPE will get the actual
pulse from that.

In the first approach, we want GRAPE to do most of the work, but not get stuck
by some weird problem of the initial pulse. We want a guess that is close to 0,
pretty random, but not so much that it would be hard to smoothen. We can get
such a pulse by doing a convolution between a random pulse and a Gaussian
window
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Unlike the first approach, the second approach could look really different for
different examples but I’ll give some general guidelines you can use the get a
good initial pulse. Let’s say, for example, you have a 3-level system where the
third level isn’t wanted (such as in the DRAG example). If you give an initial
guess like the one in the first approach, the third level will still be excited by that
pulse, and it might be hard for the algorithm to fix this. What you might do in
this scenario, is to start with an initial guess that you know excites only the first
and second levels of the system but not the third. This is easy since you know the
transition frequencies of the atom, from that you know the frequency that excites
each level. What you can do is some random pulse that has frequency around
the first-second levels frequency difference. So if you look in the frequency space,
what you see is some Gaussian distribution around the first levels frequency with
some random noise on it.

time t

Inverse
Fourier
Transform

Time space

εI

εQ

Frequency ω

ωge

ωef

Frequency space

A
m

pl
it

ud
e

(M
H

z)

Figure 13: Example of an engineered an initial pulse for system with known characteris-
tics. Normally you would also add some random noise

3.8 from states to gates

Until now we’ve discussed how to find pulses that take our system from one state
to another. This is useful for initializing the quantum system in a desired state.
However, the operation is not well defined if we start in a state other than the one
the pulse was designed for. In contrast, a numerically optimized quantum gate
must perform a well defined unitary transformation on arbitrary states.

Here’s the thing, turns out, you can change the algorithm just a little bit and get
a GRAPE algorithm that gives you back the optimal pulses that realizes a desired
quantum gate, instead of just taking you from one state to another.

To make such gate GRAPE, instead of optimizing for one state transformation,
you optimize for initial states that constitute a basis for the entire state space. This
way, since quantum operations are linear, a unique transformation on the basis of
the state space is a unique transformation on the entire system. The implementa-
tion of gate GRAPE is outside the scope of this project.
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3.9 references and further readings

The best reference I’ve found on this subject is by far the 2019 dissertation of Philip
Reinhold from Yale, "Controlling Error-Correctable Bosonic Qubits", especially
the forth chapter. Another great resource is the documentation of the python li-
brary "QuTiP", it’s documentation has some really nice explanations.





Part II

E X P E R I M E N TA L M E T H O D S

Now that we understand the theory, we can go on to the experiments.
In this section we see some experimental problems in the control of a
quantum system and how to solve them.





4
C O N T R O L L I N G A S U P E R C O N D U C T I N G Q U A N T U M
C O M P U T E R

4.1 overview

Before jumping into the specifics of how’d we control the quantum computer, let’s
start with a general overview and show how everything is connected.

This is a diagram that shows how the system is connected, from the pulse
generator to the cavity.

I Q

Transmon

I Q

Cavity

Readout LO

Transmon-
Cavity

HEMT

I

Q Computer

Fridge

LO LO

Figure 14: Diagram of the system

The I and Q signals are generated in the AWG, the LO frequency comes from
a frequency generator and so does the Read Out signal. High Electron Mobility
Transistor (HEMT) is a low-noise cryogenic amplifier.

39
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4.2 generating the pulses

4.2.1 The AWG

An Arbitrary Waveform Generator (AWG) is a device that we use to generate the
pulses we calculated with GRAPE in the previous chapter. To control the qubit
we need to send RF signals, typically ranging from 4GHz to 10GHz. Such signals
can be generated by RF signal generators (also called LO’s - local oscillators). In
contrast, the AWG sends out slowly varying envelopes, usually with a bandwidth
of a few hundred MHz. To bridge this gap, we will mix a fixed-frequency signal
from the LO with a time-varying signal from the AWG. In particular, this will also
enable us to vary the frequency of the LO in real-time with the AWG. Our goal
in the next section will be to achieve this so called single-sideband modulation of
the LO signal.

We also want to be able to un-mix the measurement result to get back only the
interesting parts of the pulse. The device we’ll use for this task is the IQ-Mixer,
but before we can get into the IQ-Mixer, we need to understand how a regular
mixer works.

4.2.2 The Mixer

The mixer has 2 inputs and one output. When you enter 2 pulses as an input,
you get their product as the output (inputting for example cos(t) and cos(2t) will
result in cos(t)cos(2t) at the output). We draw a mixer in a diagram as

Ideal	mixer
(multiplier)

Local
oscillator		(LO)

Output
signal

Input
signal

Figure 15: Ideal mixer in a diagram

The mixer circuit is non-linear. The non-linearity could be achieved with non-
linear components, such as diods.

4.2.3 The IQ-Mixer

We’ve seen what’s a regular (and ideal) mixer is, but how can we use it for the de-
sired effect? remember, we want to input a high frequency and a lower frequency
and we want the output to be a wave with a frequency that is the sum of the 2

frequencies. To do so, we can consider the following diagram
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Figure 16: The IQ mixer

Where the 90° hybrid in the diagram is a 90° hybrid coupler. This device splits
the signal into 2 signals at a 90°phase difference, hence the name. The square near
the RF sign simply adds the 2 waves.

As we can see, the IQ mixer has 3 inputs, In-phase (I), Quadrature (Q), hence
the name, and LO. We can also see that there’s only one output, RF (although you
can reverse the roles of the input and the output).

How can we use this IQ mixer to add frequencies? Let’s consider the following
inputs1

I −→ cos
(
ωIQt

)
Q −→ sin

(
ωIQt

)
LO −→ sin(ωLOt)

In this case, the input into the top mixer will be I and a LO, which is cos
(
ωIQt

)
sin(ωLOt).

Similarly, the input into the bottom mixer will be Q and 90°phase of LO, which is
sin
(
ωIQt

)
cos(ωLOt).

The total output (in RF) will be the sum of the two waves

RF = cos
(
ωIQt

)
sin(ωLOt) + sin

(
ωIQt

)
cos(ωLOt)

So we get

RF = sin
(
(ωLO +ωIQ)t

)
(42)

Perfect! this is exactly what we wanted, the output is a wave with frequency
that is the sum of the input frequencies. Only one problem, this simple scheme
turns out not to work in practice : (.

4.2.4 Theory VS Reality

If we use a spectrum analyzer and view what frequencies are in the final wave we
get the following picture

1 You can flip I and Q and get subtraction instead of addition
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Figure 17: Full Spectrum Without Any Corrections

Zooming in around the LO frequency we see
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Figure 18: Spectrum Around the LO Frequency

What is the problem? We’ve proved mathematically that it should work, so why
doesn’t it? The problem is that we can’t just assume the waves to come and go
with the same phase, the waves travel through the wire at some speed so if we
input into two different wires, two waves that are at the same phase, at the other
side of the wire they might come at different phases because of differences in
wire length, resistance, etc... So what can we do about it? You could try to make
identical parts and make everything just perfect but even slight deviation will
cause the system no to work properly, a better solution is to input more complex
waves and have some parameters to play with so we can simply find the right
parameters for the system.

We can analyze the frequency space of the output of out IQ mixer and we can
see two types of it not working correctly

• Leakage at the LO frequency

• Leakage at the sideband (ωLO −ωIQ)
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We can solve the first type of Leakage, at the LO frequency, by adding DC offsets
to the input frequencies (We’ll prove this mathematically later), and we can solve
the second type of leakage by adding phase offsets to the waves (We’ll prove this
mathematically later).

Before we can solve the problem, we need to understand what’s causing it. As
we explained earlier, a phase is created in the wires that connect everything.

leakage at ωLO − ωIQ – Let’s consider now inputting into the IQ mixer
the same waves but with the phases that were created in the transmission wires
instead of what we had earlier

I −→ cos
(
ωIQt+ϕI

)
Q −→ sin

(
ωIQt+ϕQ

)
LO −→ sin(ωLOt+ϕLO)

Using the same calculation we did before, we get that

RF = I · LO+Q · LO(90°)
= cos

(
ωIQt+ϕI

)
· sin(ωLOt+ϕLO)

+ sin
(
ωIQt+ϕQ

)
· cos(ωLOt+ϕLO)

After some algebra we get

RF = cos
(
ϕQ −ϕI

2

)
sin
(
(ωIQ +ωLO)t+

ϕQ +ϕI
2

+ϕLO

)
+ sin

(
ϕQ −ϕI

2

)
cos
(
(ωIQ −ωLO)t+

ϕQ +ϕI
2

−ϕLO

)
This expression is quiet scarier than the one we got earlier... More than that, we get
two frequencies instead of one, we’ve got an unwanted frequency at ωLO −ωIQ
and the only way to make it disappear is if the phases are equal, ϕI = ϕQ. Also
the final wave as a phase of ϕLO, this isn’t really a problem and if we define our
starting point differently we can set ϕLO to 0.

lo frequency leakage – Another type of leakage we’ve observed is leak-
age at the LO frequency, it makes sense that some of the original wave will go
through the mixer untouched. To fix that leakage, we’ll need to somehow change
the I and Q waves to cancel it out. The simplest way to do so is to add DC offsets
to the inputs 2

I −→ cos
(
ωIQt+ϕI

)
+ εI

Q −→ sin
(
ωIQt+ϕQ

)
+ εQ

LO −→ sin(ωLOt)

2 I’ve removed the phase on the LO wave since we’ve seen it doesn’t really change anything
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We’ve seen this story before... the calculation of the RF wave is the same so we’ll
skip the calculation. The end result is

RF = cos
(
ϕQ −ϕI

2

)
sin
(
(ωIQ +ωLO)t+

ϕQ +ϕI
2

)
+ sin

(
ϕQ −ϕI

2

)
cos
(
(ωIQ −ωLO)t+

ϕQ +ϕI
2

)
+εI sin(ωLOt) + εQ cos(ωLOt)

=RFold + εI sin(ωLOt) + εQ cos(ωLOt)

where RFold is the RF wave before adding the DC offsets.
What we get is the same wave, but now we can play with the LO frequency

at the output. Later we’ll change the DC offsets so that they will cancel to LO
frequency leakage to minimize it.

Now that we have all of our "knobs" we can change and play with, we can start
using them to minimize the leakages.

4.2.5 Finding Optimal Constants

As we’ve seen in the previous section, there are 4 variables we can "play" with to
get the best variables for our system, as long as we don’t change the system, these
variables stay the same. What we want to do now is to actually find them. Our
system is connected like so

We have the Quantum Machine3 that generates the I and Q inputs that go
into the mixer (and also to an oscilloscope for debugging). There’s the frequency
generator4 that is connected to the mixer and generates 7GHz wave, and there’s
the frequency spectrum analyzer5 that is connected to the computer.

Let’s first attack the leakage at the LO frequency. For now we’ll have an LO
frequency of 7GHz that we want to change by 25MHz (The same variables work
for all frequencies this is just as an example)

lo frequency leakage As proven in section 4.2.4, to minimize this kind of
leakage all we need is to play with the DC offsets of the IQ inputs. To do so, we
first need to define what we want to minimize, which in this case is simply the
power of the frequency at 7GHz, we can measure that power with our spectrum
analyzer, we’ll call that our cost function. We have a 2-dimensional variable space,
we need to find where in this space the cost function is at a minimum. To do
so, we’ll start by using a brute force method to find the general location of the
minimum in the variable space, since brute force is very inefficient we can’t really
use it to find the exact location of the minimum so we start by only doing a
low precision brute force and then use a different optimization algorithm to find
the exact location of the minimum. We’ll use the scipy.optimize.fmin as the
algorithm for precise minimum location.

sideband leakage Now that we’ve minimized the LO frequency leakage, we
want to minimize the sideband leakage. We do that by changing the phases of the

3 this is the heart of the system, for now we’ll use it to make the MHz waves with different phases,
DC offsets and frequencies

4 KeySight N5173B
5 SignalHound USB SA-124B
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IQ waves from the quantum machine, it’s important that changing the phases
doesn’t change the LO leakage and luckily for us, as proven in section 4.2.4 that’s
whats happening. to change the phases we don’t simply specify the phases, we
use the correction matrix of the Quantum Machine. This time our cost function is
the frequency at ωLO−ωIQ, we can do the same as we did in the LO leakage and
use first a brute force optimization to find the general location of the minimum
and the use the fmin algorithm to find the exact location of the minimum of the
cost function (this time in the scale-angle variable space). You can see the result
here
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Figure 19: Spectrum Around the LO Frequency of the optimized IQ mixer

The other frequencies aren’t completely reduced because nothing is perfect, but
ir’s pretty close and good enough for this demonstration.

4.3 references and further readings

A great book on couplers and mixers I used while writing this chapter is "Microwave
Engineering" by David M. Pozar. It provides a much more in depth look on the
subject.

Another great resource is the Marki Microwave RF & Microwave knowledge
base at
https://www.markimicrowave.com/engineering/. Which provides useful introduc-
tion to many topics in microwave engineering.





5
F U T U R E W O R K A N D C O N C L U S I O N S

We conclude this project with the knowledge and tools to create and control quan-
tum systems, from understanding them theoretically to connecting and calibrating
the devices that actually send the control pulses, to creating the control pulses to
create arbitrary quantum states and operations.

As with anything in life, this project must to come to an end at some point, each
subject we discuss opens a rabbit hole we’ll never see the end of.

A natural next step for this project would be to implement the gate GRAPE.
explain exactly how the gate GRAPE from section 3.8 works, and implement it in
code. The gate GRAPE is the missing piece needed to actually creating quantum
circuits, and it opens many possibilities for quantum computation and informa-
tion.

Another, pretty obvious, continuation to this project would be, actually imple-
menting it, physically, in an experiment. This project is (almost) entirely theoret-
ical and numerical, for all you know I was lying to you the hole time. It would
be nice to actually check GRAPE on an actual quantum system. Unfortunately, at
this point the Quantum Circuits Laboratory is not yet fully built and there is no
fridge to cool the quantum system in.

Another worthwhile extension of this project is to develop numerically opti-
mized operations for multiqubit systems. This shouldn’t be that difficult since the
qubit-qubit (or atom-atom) interaction aren’t that different from the qubit-cavity
interaction we already have, and our optimal control code accepts quantum states
in any Hilbert space. Evidently, the main limitation would be the exponential
time required for the numerics as the number of qubits grows. Luckily, in an ac-
tual quantum computer we will only want to perform local operations on a few
qubits, while ignoring the rest.
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Part III

A P P E N D I X

Funnily enough, I actually find the appendices to be more interesting
than the project itself.





A
A N A LY T I C A L C A L C U L AT I O N S O F O P T I M A L P U L S E S

Throughout chapter 3 we embarked on a journey finding optimal pulses with nu-
merical methods, but it’s important to note that in some specific cases we can cal-
culate the solution analytically. This has more uses than for mathematical beauty,
we can use these cases as test cases to debug our GRAPE algorithm.

We’re going to start with everyone’s favourite, Shrödinger’s equation1

ψ̇ = −iĤψ

The qubit is in a general superposition of the ground and excited states

ψ = Cg(t) |g〉+Ce(t) |e〉

where Cg and Ce are the probability amplitudes of the ground and excited states.
Shrödinger’s equation now becomes

Ċg(t) |g〉+ Ċe(t) |e〉 = −iĤatom(Cg(t) |g〉+Ce(t) |e〉) (43)

The Hamiltonian of an atom interacting with a classical field (ignoring the cav-
ity) was derived section 2.3.2 and is given from equation 27. We can write it as

Ĥatom = ω0â
†â+Ω(t)σ̂x = ω0 |e〉 〈e|+Ω(t)(|g〉 〈e|+ |e〉 〈g|)

Where Ω(t) is the electromagnetic field amplitude.
Replacing Hatom in equation (43) with the expression we have for it the equa-

tion becomes

Ċg(t) |g〉+ Ċe(t) |e〉 = −i(ω0 |e〉 〈e|+Ω(t)(|g〉 〈e|+ |e〉 〈g|) ) · (Cg(t) |g〉+Ce(t) |e〉)

Some algebra magic later (remembering that {|g〉 , |e〉} constitutes an orthonormal
basis, so 〈e|e〉 = 〈g|g〉 = 1 and 〈g|e〉 = 〈e|g〉 = 0)

Ċg(t) |g〉+ Ċe(t) |e〉 = −iω0Ce |e〉− iΩ(t)(Ce |g〉+Cg |e〉)

We can left multiply this equation once with 〈g| and once with 〈e|, getting the 2D
system of differential equations

〈g| → Ċg(t) = −iΩ(t)Ce(t)

〈e| → Ċe(t) = −iω0Ce(t) − iΩ(t)Cg(t)

Instead of looking at an arbitrary pulse Ω(t), we can look at a sinusoidal pulse
of the form Ω(t) = Ω0e

iωt where ω is the frequency of the pulse. The general
equations now become

Ċg(t) = −iΩ0e
iωtCe(t)

Ċe(t) = −iω0Ce(t) − iΩ0e
iωtCg(t)

1 Planck’s reduced constant is set to 1,  h = 1
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It’s comfortable to make the unitary transformation

α(t)→ Cg(t) β(t)→ eiωtCe(t)

and after substituting and a bit of algebra get the linear system of equations

α̇ = iΩ0β

β̇ = iΩ0α+ i∆β

where ∆ = ω−ω0 and is known as the detuning. Deriving the second equation
over time and substituting α̇ with it’s known expression we get the following
differential equation for β

β̈− i∆β̇+Ω20β = 0

We can find the solution by "guessing" a solution of the form β(t) = eAt and
when plugging that into the equation we get the quadratic

A2 − i∆ ·A+
Ω20
4

= 0

Assuming my high school math teacher wasn’t lying to me, the solutions to this
equation are

A± =
i∆± i

√
∆2 + 4Ω20

2

We’ll define the parameter

Ω =
√
∆2 + 4Ω20

The two solutions we found constitute a basis of solution for the linear equation,
so the general solution is of the form

β(t) = ei
∆t
2 (C1e

iΩt2 +C2e
−iΩt2 )

We are looking for solutions that start at the ground state, this gives us an initial
condition

β(0) = 0 ⇒ C1 +C2 = 0

α(0) = 1 ⇒ β̇(0) = iΩ0 = iΩC1

Plugging in the calculated coefficients and the solution becomes

β(t) = 2i
Ω0
Ω
ei
∆t
2 sin (

Ω

2
t)

Remember that β is the population of the excited state with the addition of a
phase, the phase doesn’t change the probabilities so

Pe(t) = |Ce|
2 = |β|2 =

Ω20
Ω2

(1− cos (Ωt))

where Pe(t) is the probability for the atom to be in an excited state at time t.
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The result we got, where the atom oscillates between the ground and excited
states is called Rabi Oscillations. Figure 20 plots this result, once with zero de-
tuning (and therefore Ω = Ω0) and once with non zero detuning (and therefore
Ω > Ω0)
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Figure 20: Rabi oscillations of atom in a classical electromagnetic field. The top graph is
without detuning ∆ = 0 and the bottom graph is with detuning ∆ 6= 0

You can see that with zero detuning, the atom oscillates fully between ground
and excited states. With non-zero detuning, the atom doesn’t fully reach the ex-
cited state, it goes only part of the way and then goes back down. This means that
if you want to get to the excited states you need to send a pulse with exactly the
same frequency as the atom.

We can take everything we got so far and construct a pulse that will take the
ground state into the excited state. First, the pulse must have the same frequency
as the atom ω = ω0. If the total duration of the pulse is T, then the excited state
is fully populated at time T

Pe(T) = 1 = (1− cos(Ω0T))

And the solutions are

Ω0 =
πk

T
for k = 1, 2, 3, . . .

Where k corresponds to the amount of oscillations between the ground and ex-
cited states. Ideally the atom would go directly to the excited state without oscil-
lating between the states, so we’ll set k = 1.

Putting it all together, for a two level atom with frequency ω0, and a pulse with
duration T , the pulse you need to send to get from the ground state to the excited
state is

Ω(t) =
π

T
eiω0t

Where the real and imaginary parts correspond the sin and cos waves we send to
the atom (or I and Q pulses if you prefer). Writing them explicitly we get

ΩI(t) =
π

T
sin(ω0t) and ΩQ(t) =

π

T
cos(ω0t)
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We can actually check using the simulation we made in chapter 3 and see that yes!
These pulses lead to the qubit going from the ground to excited states, amazing!

There is actually a more general result about π-pulses we can see from here, we
won’t prove it but we can see it works. Any pulse that satisfies∫T

0

Ω(t)dt = π

Would take the ground state atom to the excited state. You can use a something
like a Gaussian or any other weird pulse that satisfies this condition, and they will
all work. We can see that indeed, the pulse we derived does satisfy it.

There are actually many more examples we can find analytical solutions for.
There are even analytical solution for the 3-level system and DRAG. We won’t
touch on them here, they are much more complicated, although they are definitely
possible to calculate analytically.



B
Q U A N T I Z I N G E L E C T R I C C I R C U I T A N D T H E J O S E P H S O N
J U N C T I O N

Throughout the project, I mentioned several times that the physical implementa-
tion of the qubit is not the subject of the project and ignored it. It would be a crime
no to at least give a simple explanation of the implementation of the qubit, espe-
cially since we dedicated and entire section (section 3.5.1) to the problem with our
physical implementation. In this appendix I will try to give a simple explanation
of the qubit as a quantum LC circuit, using the tools we got when we quantized
the electromagnetic field.

This appendix is here for two reasons. The first we already mentioned, to gain
some insights on how the qubit is implemented physically. The second, less ob-
vious reason, is to really drive home the point that Dirac’s method for Canonical
quantization can be applied to any oscillating phenomena. From mechanical os-
cillator, to the electromagnetic field and even an LC circuit, as we’ll see shortly.

b.1 quantizing the lc circuit

The LC circuit is constructed by connecting a capacitor with capacitance C to a
coil with inductance L, hence the name, LC. Drawing it in a diagram is as shown

I

VL C

+

-

Figure 21: The LC circuit

To begin the quantization we first need choose a pair of canonically conjugate
variables to represent the state of the system. The most obvious pair of variables
would be the voltage V and the current I, but turns out they are not canonically
conjugate variables. Instead, we’ll choose the charge of the capacitor q and the
inductor’s magnetic flux ϕ to be the variables.

Let’s check that they are indeed canonically conjugate. The energy (and there-
fore, the Hamiltonian) of the capacitor’s electric field is given by

HC =
q2

2C

and the energy of the magnetic field stored in the inductor is given by

HL =
ϕ2

2L
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Now we can sum these two donations to the Hamiltonian and get that the Hamil-
tonian of the LC circuit is

HLC(q,ϕ) =
ϕ2

2L
+
q2

2C

The Hamilton equations in terms of q and ϕ are

q̇ =
∂HLC
∂ϕ

=
ϕ

L
= I (44)

ϕ̇ = −
∂HLC
∂q

= −
q

C
= −V (45)

These equation are correct since 44 is the definition of current and 45 is the defi-
nition of potential. Therefore q and ϕ are canonically conjugate variables and we
can go on and quantize them.

To quantize these variables we simply need to replace them with operators

q→ q̂

ϕ→ ϕ̂

satisfying the commutation relation

[q̂, ϕ̂] = i h

as always with quantum harmonic oscillator we’ll define annihilation and creation
operators

â =
q̂

q0
+ i

ϕ̂

ϕ0

â† =
q̂

q0
− i

ϕ̂

ϕ0

where

q20 = 2 h

√
C

L

ϕ20 = 2 h

√
L

C

After some algebra magic we can get the expression of the Hamiltonian

ĤLC =  hω(â†â+
1

2
) with ω =

1√
LC

This is the good old expression for the Hamiltonian of a quantum harmonic oscil-
lator and we can treat it as we did with any other quantum harmonic oscillator.

b.2 artificial atoms - the josephson effect

The problem with the simple quantum LC circuit is that it’s energy levels are linear.
By linear, I mean that the difference in energy between two neighboring levels is
the same for every level, En+1 − En =  hω for all n.1 This is a problem since we

1 Unlike an actual atom where the energy difference decreases at higher levels



B.2 artificial atoms - the josephson effect 57

want to treat it as a two level system. If we send a pulse with  hω energy, we want
it to affect only the lower two levels, but since the energy difference between all
the levels is the same, sending such a pulse would also excite the higher levels
uncontrollably.

We want to introduce un-linearity to the levels, so still E1 − E0 =  hω01 but
E2 − E1 =  hω12, E3 − E2 =  hω23 and so on, where ωn n+1 6= ω01. This way if
the system is only populated at one of the lower two levels and we send a pulse
with energy  hω, the only levels affected are the lower two and not the higher
ones2.

To create these a-linearities we can use the Josephson Junction. A Josephson
junction is simply a cut in the wire, a very (very) thin cut, the two pieces of wire
are around 10nm apart. The Josephson junction replaces that inductor in the LC
circuit. In a circuit diagram it’s drawn as a little x, and the circuit diagram of the
LC circuit with it is

I

V C

+

-

Figure 22: The LC circuit with a Josephson junction

And the effect of adding a Josephson junction is replacing the Hamiltonian of
the inductor ϕ̂

2

2L with Ej cos
(
2e
 h ϕ̂

)
.

ĤJosephson =
q̂2

2C
+ Ej cos

(
2e
 h
ϕ̂

)
This does exactly what we want, for the first level we can approximate the cosine
as a parabola and get E1 − E0 =  hω01 but since the cosine diverges from the
parabola after that the difference between the energy levels lessens and lessens
between each pair of higher levels. Here’s a visual representation of the energy
level of the LC circuit with the Josephson junction

2 This is obviously an ideal case, as we seen in section 3.5.1 with DRAG
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Figure 23: Potential of the circuit as a function of the superconducting phase, and the
non-linear energy levels of the Josephson junction

We can treat the Josephson junction as a potential barrier, and calculate the
wave function on both sides of the wire.

We’ll call the wave function on one side of the junction ψ1 and on the other side
ψ2, their dynamics are determined by the coupled shrödinger equations:

i h
∂ψ1
∂t

= µ1ψ1 +Kψ2

i h
∂ψ2
∂t

= µ2ψ2 +Kψ1

Where K is the coupling across the barrier and µ1/2 are the lowest energy states
of each wave function. We’ll "guess" solutions of the form

ψ1/2 =
√
n1/2e

iθ1/2

Yielding the two equations

 h
∂n1
∂t

= − h
∂n2
∂t

= 2K
√
n1n2 sin(θ2 − θ1)

− h
∂(θ2 − θ1)

∂t
= µ2 − µ1

n1/2 are the density of cooper pairs, and by definition of the current, the current
is ∂n1∂t . When voltage is applied the energy levels shift as µ2 − µ1 = 2eV . Finally
to make the equations shorter we’ll write I0 = 2K

√
n1n2 and δ = θ2 − θ1. The

equations now become

I = I0 sin δ
∂δ

∂t
=
2eV
 h

We can now calculate the electric power (which is the derivative of the energy)
from the classical equation

∂E

∂t
= P = IV = (I0 sin δ) · (

 h

2e

∂δ

∂t
) = −

I0 h

2e

∂ cos δ
∂t
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Integrating over time, we get that the expression for the energy is

E = −
I0 h

2e
cos δ

If we define Ej = −I0
 h
2e , replace δ with ϕ̂, and replace the energy with the Hamil-

tonian, we get

ĤJosephson = Ej cos ϕ̂

just as we’ve written earlier.
This is not the best treatment of the Josephson junction but it’s a rough idea

of the explanation. This expression gives us the a-linearities we want to get to
implement the qubit.





C
A N O T H E R M E T H O D : C O M P U TAT I O N A L G R A P H S

In the optimal control section, in essence, we try to minimize the cost of many
many variables, this is a similar problem that to teaching neural networks and
machine learning, we might be able to borrow some tricks and method they use
to solve our problem.

Instead of thinking of a cost function as just a function, we can treat it as a
computational graph. We’ll discuss briefly about what’s a computational graph and
how can we implement GRAPE using one. We won’t go in depth as we did in
the chapter on optimal control, it’s only a general overview meant to show an
alternative method. Let’s start by defining a computational graph1.

c.1 what are computational graphs

A computational graph consists of nodes and connection between them, a node
can be one of one of three things

• Operations (red), the operation takes a list of numbers from other nodes
and outputs another list of numbers (doesn’t need to be of same size)

• Parameters (orange), these are, as the name suggests, the parameters of the
graph and can be used by the operations.

• Variables (blue), these are the variables that of the graph, and they too can
be used by the operators of the graph

The graph starts as the variables, goes through some operations that use parame-
ters and gives out some resualt. Let’s take a look at a simple example

x

A ×

+

Ax+ b

b

y = Ax

z = y+ b

Figure 24: Example of a basic computational graph

Here, x is the variable,A and b are the parameters, and y and z are the operators.
The function that this graph represents is y = a · ex. For now it properly seems
overkill to use the graph to represent that simple of a function but in the next

1 Of course, graph theory is an entire field of mathematics by itself and we can’t really give a rigorous
definition, but more of an intuitive explanation
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two sections you’ll see the magic of the computational graph, in terms of thinking
about the gradient.

c.2 back-propagation

This is the magic of the computational graph, calculating the gradient of the cost
function by back-propagating the derivatives to the initial variables. The idea is
simple, instead of trying to directly calculating the gradient, we calculate the
derivative of node by the previous node, and relate the cost function to the vari-
ables by the chain rule. What does that mean, let’s show an example.

Let’s say we have a simple computational graph that looks like

x→ L1 → L2 → L3 → y

and we want to calculate the derivative, ∂y∂x . Instead of calculating the derivative
directly, we can back-propagate the derivative as

∂y

∂x
=
∂y

∂L3
· ∂L3
∂L2
· ∂L2
∂L1
· ∂L1
∂x
· ∂y
∂x

luckily for us each operation is very simple so each derivative is simple as well.

c.3 grape in a computational graph

Now we can finally implement grape as a computational graph, we’ll consider the
simplest case of GRAPE, no constraints, only the original definition (see equations
36, 34 and 31)

F(~ε) =

∣∣∣∣∣〈ψtarget|
N∏
i=0

e−i·δt(H0+εkHd) |ψinitial〉

∣∣∣∣∣
2

In this case, ~ε is the variable, H0, −i · δt, 〈ψtarget| and |ψinitial〉 are the param-
eters. They relate through the operators and everything can be displayed as in
figure. 25

2

The layers are as follows

Lk1 = −iδtHdεk

Lk2 = −iδtH0 + L
k
1

Lk3 = eL
k
2

L4 =

N∏
k=0

Lk3

C = 〈ψtarget|L4 |ψinitial〉

And the derivatives are calculated rather easily as

2 Simplifying for 3 time steps, to add more time steps is pretty straight forward
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∂Lk1
∂εk

= −iδtHd

∂Lk2
∂Lk1

= 1

∂Lk3
∂Lk2

= eL
k
2

∂L4

∂Lk3
=
∏
i 6=k

Li3

↓
∂C

∂εk
= 〈ψtarget|

∂L4

∂Lk3

∂Lk3
∂Lk2

∂Lk2
∂Lk1

∂Lk1
∂εk

|ψinit〉

It’s important to note that ∂L
i
1

∂εj
= 0 for i 6= j so we didn’t refer to those derivative

(This is true for the derivative between any two layers).
We now everything we need to implement GRAPE as a computational graph,

and we can use a library, such as google’s tensorflow, to find the optimal pulse.
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Figure 25: Diagram of the computational graph implementation of GRAPE
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